
Improving SW-HW processing pipeline
for storage stack / service workflows

with CXL
Presenters:
Navneet Rao, Solution Architect, DCAI / Altera, Intel
Bhushan Chitlur, Sr. Principal Engineer, DCAI / Altera, Intel

Building High Performance Storage Solutions
• Building scalable,

disaggregated,
secure, scaled-out
datacenter storage
infrastructure with
reliability is
extremely
challenging

• Current accelerator
offload techniques
may not be
sufficient to meet
the increasing
demand on high
performance secure
storage solutions

Network Services
N/W compression
N/W encryption

N/W de-compression
N/W de-encryption

200GbE – 400GbE – 800GbE

Disaggregated Scaled Out Storage Architecture

Storage INITIATOR:
GPU

Storage INITIATOR:
CPU

Storage INITIATOR:
Custom Silicon

Storage TARGET:
JBoD

Storage TARGET:
JBoF

Storage TARGET:
Tape

Fabric Services

 Connectivity
(Authentication)

 Policy (Partition,
Failover, KPIs)

 Scalability (Load
Balance, Data
growth,
Determinism)

Fabric Side
Technologies

Initiator Side
Technologies

Target Side
Technologies

He
te

ro
ge

no
us

 In
iti

at
or

s

He
te

ro
ge

no
us

 T
ar

ge
ts

Heterogenous
Requests

2

DPU

Rise of the DPU (aka IPU)
• DPU becomes the

focal point for all
infrastructure
processing which
includes networking
and storage

• Storage target node
requires
significantly more
storage specific
computation (Focus
of today’s talk)

3

CPU GPU

N/W
Accel

Storage
Accel

User
VM

User
VM

DPU

CPU

N/W
Accel

Storage
Accel

Storage
Stack/Pipeline

(E.g., SPDK)

Target Storage Acceleration Functions
 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

Initiator Storage Functions
 E.g., Virtio-blk, NVMe-oF

N/W
fabric

Storage Target NodeStorage Initiator Node

HW
SW

HW
SW

DPU
Memory

CPU
Memory

Challenges : CPU+DPU Co-Processing (PCIe)
• Storage pipeline

control + dataplane
processing requiring
multistep compute
intensive operations
requires CPU+DPU co-
processing

• CPU+DPU
coprocessing using
PCIe requires multiple
data movements
between CPU and DPU
memory domains,
resulting in significant
loss in performance

4

DPU

Accel
X

Storage Stack/Pipeline (E.g. SPDK)

Target Storage Accelerator Functions
 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

PCIe

HW
SW

Accel
Y

Accel
Z

Step1

CPU

Step2

N/W

CPU
Memory

DPU
Memory

Storage Initiator/Target Node
Memory
Domains

Step3

Step n

Multiple DMA
transfers between

host & device
buffers

5

Accelerator Init

Get IO Channel: PCIe

Assign Memory Domain: PCIe private mem

App Buffer: Allocate & align

Accelerator operation sequence(s)

App Buffer: Free

Accelerator Finish

Storage Node:
CPU+DPU Co-Processing (PCIe) using SPDK software stack / services

• initialize
• get_io_channel

• memory_domain
• get_buf; get_buf_align

• operation_exec_ctx; sequence_finish / reverse / abort
• submit_dif_verify / encrypt / compress / xor
• submit_dif_generate / decrypt / decompress
• submit_crc32c / crc32cv
• submit_compare / copy / dualcast

• put_buf

• finish

Application usage: Operations Workflow & Data Structures: spdk_accel_*

DPU
Memory

CPU
Memory

CPU
Memory

DPU
Memory

(PCIe
private

memory)

Memory Domains

Multiple
DMA transfers

between
 host & device buffers

CPU+DPU Co-Processing (CXL)
Key paradigm shift
• Create single shared

memory domain
between CPU and DPU

• Use CXL-attached
device memory (i.e.,
CXL.mem) as CPU+DPU
shared memory

• Avoids explicit data
movement between
CPU and DPU

• Preserve, leverage
existing software stack
workflows &
datastructure’s

6

DPU

Accel
X

Storage Stack/Pipeline (E.g., SPDK)

Target Storage Accelerator Functions
 Erasure Coding
 Replication, Deduplication
 Storage Compression
 Storage Encryption

CXL (.io, .cache, .mem)

HW
SW

Accel
Y

Accel
Z

Step1

CPU

Step2

N/W

Shared
CPU & DPU

Memory
(CXL.mem)

Storage Initiator/Target Node
Memory
Domains

Step3

Step n

7

Accelerator Init

Get IO Channel: PCIe

Assign Use Memory Domain: PCIe private mem

App Buffer: Allocate & align

Accelerator operation sequence(s)

App Buffer: Free

Accelerator Finish

Storage Node:
CPU+DPU Co-Processing (CXL) using SPDK software stack / services

• initialize
• get_io_channel

• memory_domain
• get_buf; get_buf_align

• operation_exec_ctx; sequence_finish / reverse / abort
• submit_dif_verify / encrypt / compress / xor
• submit_dif_generate / decrypt / decompress
• submit_crc32c / crc32cv
• submit_compare / copy / dualcast

• put_buf

• finish

Application usage: Operations Workflow & Data Structures: spdk_accel_*

Shared CPU &
DPU Memory

(CXL.mem)

Memory Domains

*https :/ / s pdk.io/ doc/ accel_8h.html#details

https://spdk.io/doc/accel_8h.html#details

DPUCPU
Shared CPU & DPU Memory (CXL.mem)

8

Accelerator Init

Assign Memory Domain: CXL.mem

Buffer Allocate & Align

Accelerator Operations

Free Buffer

Accelerator Finish Func:

X

DIF
Verify

En
Crypt

Compress

XOR

CRC

Copy
Func:

Y

Compare

CRC

XOR

De
Compress

De
Crypt

DIF
Generate

Accel “X” Accel “Y” Accel “Z”

Func:

Z

Func
#Z1

Func
#Z2

Func
#Z3

Func
#Z4

Func
#Z6

Func
#Z6

Storage Node:
CPU+DPU Co-Processing (CXL) using SPDK software stack

 Higher IOPS due to simplified Storage data accesses & operations, e.g.,
• bdev_write: sequence_encrypt + sequence_compress + Storage_write
• bdev_read: Storage_read + sequence_decompress + sequence_decrypt

 Preserves Software stack / workflow investments
• Existing CPU accelerators, newer DPU accelerators can both be leveraged
• Accelerator operations vs [data segmentation & reassembly and storage transport]

STORAGE NODE using CXL

Thank you
• Q&A

9

Reference / Back up

10

Storage INITIATOR

Deployment Scenarios (e.g., 25TB)

11

Storage TARGET: JBoD

Storage TARGET: JBoF

Storage TARGET: Tape

N/W compression
N/W encryption

N/W de-compression
N/W de-encryption

Application VM Config
8 vCPUs, 128GB, 100Gbps, 25TB Storage Functions

 Erasure Coding
 Replication
 Deduplication
 Storage Compression
 Storage Encryption

FABRIC SERVICES

 Connectivity (Authentication)
 Policy (Partition, Failover, KPIs)
 Scalability (Load Balance,

Data growth, Determinism)

AWS: Global Accelerator, S3TA
Google: ???
Microsoft: Azure Front Door

Implementation Scenario (e.g., SPDK)

12

Compute & Storage processing: SPDK

Storage
access

Network & Storage processing

Accelerator(s)

Accelerator(s)

DIMMs

DIMMs

NIC-DIMM

CPU-DIMM

NIC-Acclr

CPU-Acclr

NIC-Storage

Ingress / Egress

Storage

PCIe PCIe

FABRIC
SERVICES

NVMe-oF Target(s)

vhost Target(s)

iSCSI Target(s)

J
B
O
F

J
B
O
D

JBOD

Storage TARGET

	Improving SW-HW processing pipeline for storage stack / service workflows with CXL
	Building High Performance Storage Solutions
	Rise of the DPU (aka IPU)
	Challenges : CPU+DPU Co-Processing (PCIe)
	Slide Number 5
	CPU+DPU Co-Processing (CXL)
	Slide Number 7
	Slide Number 8
	Thank you
	Reference / Back up
	Deployment Scenarios (e.g., 25TB)
	Implementation Scenario (e.g., SPDK)

