
Unified Memory Framework
Presenter: Igor Chorazewicz (igor.chorazewicz@intel.com)
Authors: Sergei Vinogradov, Igor Chorazewicz, Piotr Balcer, Rafal Rudnicki

Developer Software Engineering 2Software @ Intel

Agenda

• Heterogenous memory systems challenges
• Solving the challenges using UMF
• UMF architecture overview
• Status and plans
• Summary

Developer Software Engineering 3Software @ Intel

Heterogenous memory systems

• Increased demand for data processing leads to memory subsystems
of modern server platforms becoming heterogeneous

• A single application can leverage multiple types of memory:
• Local DRAM
• HBM
• CXL-attached memory
• GPU memory

• Utilizing heterogenous memory requires:
• A way to discover available memory resources
• Deciding where to place the data and how to migrate it between memory types
• Interacting with different APIs for allocation & data migration

Developer Software Engineering 4Software @ Intel

Unified Memory Framework (UMF)

Goal: Unify path for heterogeneous memory allocations and resource
discovery among higher-level runtimes (SYCL, OpenMP, Unified
Runtime, MPI, oneCCL, etc.) and external libs/applications.

What it is:
• A single project to accumulate technologies related to memory

management.
• Flexible mix-and-match API allows tuning for a particular use case.
• Complement (not compete with) OS capabilities.

• OS - page-size granularity; Applications – object-level abstraction.

https://github.com/oneapi -src/unified-memory-framework/

https://github.com/oneapi-src/unified-memory-framework/

Developer Software Engineering 5Software @ Intel

Common Memory Allocation Structure

Allocator API

Heap manager

Memory provider

Application

VirtualAllocmmap

C-style API
(malloc/free)

Heap Manager

C++-compliant allocators & memory resources

GPU Drive
System-level interface:
• Page-size granularity.
• Might be expensive.

Application-level interfaces:
• Object-size granularity
• Fine grain allocations

Memory pooling/caching:
• Pools big chunks from memory

provider
• Service app allocations
• Various implementations optimized

for different use cases
• (concurrency, fragmentation, etc.)

Developer Software Engineering 6Software @ Intel

UMF: High-Level Idea

Application

libc

OS

Kernel
Mode

User
Mode

malloc

mmap

Memory
pool

Application

UMF

OS

umfPoolMalloc

Pool 2Pool 1 Pool 3

Local DRAM Local
DRAM

Local
HBM

Remote Memory
over CXL.mem

GPU
Memory

what (size, alignment) to allocate what & where (in which pool) to allocate

Driver

• Expose different kinds of memory as pools/heaps with different properties and behavior. For example:
• Pool 1 resides on GPU.
• Pool 2 relies on OS memory tiering - do the same as regular malloc.
• Pool 3 is bound to DRAM & CXL.mem (allows OS to migrate pages between DRAM and CXL.mem but prohibits migration to

HBM). Heap manager can do page monitoring (like Linux DAMON) and make advice to OS (madvise).

• Multiple heaps with different
properties

• Keep certain kinds of
allocations separate from
others

• Mapped to different HW

Regular malloc flow UMF flow

Developer Software Engineering 7Software @ Intel

• UMF is a framework to build allocators and organize
memory pools.

• Pool is a combination of pool manager and memory
provider.

• Memory provider does actual memory (coarse-grain) allocations.
• Heap manager manages the pool and services fine-grain malloc/free

request.

• UMF defines heap manager and memory provider
interfaces.

• Provides implementations (disjoint pool, scalable pool, OS provider) of
heap managers and memory providers.

• Heap managers and Memory provider implementations are static
libraries that can be linked on demand.

• External heap managers and memory providers are allowed.
• Users can choose existing ones or provide their own.

UMF Architecture

UMF

disjoint
pool

scalable
pool

Pool managers interface

Memory provider interface

OS provider

Allocation
API

Pool creation
API

Memory tracker

Observability
API

L0 provider

L0 Driver OS

jemalloc
pool

Memspaces

Memory Selector
API

Topology
Discovery

HWLOC

Developer Software Engineering 8Software @ Intel

High-level API: memspaces

memspace HOST_ALL

Memory_target:

Numa 0
Memory_ target :

Numa 1

memspace
HBM

Memory_ target :

Numa 1

• Memspace is an abstraction over memory resources: it’s a collection of memory targets.
• Memspace can be used as a means of discovery or for pool creation
• Memory target represents a single memory source (numa node, memory-mapped file, etc.)

and can have certain properties (e.g. latency, bandwidth, capacity)
• UMF exposes predefined memspaces (HOST_ALL, HBM, LOWEST_LATENCY, etc.)

Developer Software Engineering 9Software @ Intel

Basic Example

// Create memory pool of HBM memory from predefined memspace
umf_memory_pool_handle_t hbmPool = NULL;
umf_memspace_handle_t MEMSPACE_HBW = umfMemspaceHighestBandwidthGet();
umfPoolCreateFromMemspace(MEMSPACE_HBW, NULL, &hbmPool);

// Create memory pool on top of the highest capacity memory
umf_memory_pool_handle_t highCapPool = NULL;
umf_memspace_handle_t MEMSPACE_HIGH_CAP = umfMemspaceHighestCapacityGet();
umfPoolCreateFromMemspace(MEMSPACE_HIGH_CAP, NULL, &highCapPool);

// Allocate HBM memory from the pool
void* ptr1 = umfPoolMalloc(hbmPool, 1024);

// Allocate memory from the highest capacity pool
void* ptr2 = umfPoolMalloc(highCapPool, 1024);

umfFree(ptr1); // Pool is found automatically
umfFree(ptr2); // Pool is found automaticallym

al
lo

c/
fre

e
flo

w
Po

ol
 c

re
at

io
n

flo
w

Developer Software Engineering 10Software @ Intel

UMF: Interop capabilities
Memory is a key for efficient interoperability
• Modern applications are complex.

• Multiple libraries/runtimes might be used by a single
application.

• Memory allocated by one library might be used by another
library.

• UMF aggregates data about allocations.
• Can provide memory properties of allocated regions.

• Example: Memory allocated by OpenMP/SYCL is used by
MPI for scale-out. UMF can tell:

• Whether it is OS-managed or GPU driver-managed memory.
• Which NUMA node is used.
• MPI can get IPC handle to map memory to another process.

Application

UMF

OS

Allocation API

Pool 2Pool 1 Pool 3

Local
DRAM

Local
HBM

Remote Memory
over CXL.mem

GPU
Memory

Driver

Lib 1

Observability API

Lib 2

Allocate
memory Use previously

allocated memory

Developer Software Engineering 11Software @ Intel

Current Status and Plans for 2024

• First release as internal component of oneAPI 2025.0 in 2024Q3.
• Open-source repo is created for open development.
• Key stakeholders:

• Unified Runtime: USM memory pooling (used by SYCL and OpenMP offload).
• Intel MPI: interop with SYCL and OpenMP based on Observability & IPC API.
• oneCCL: memory pooling for big allocations and IPC functionality.
• libiomp: build OpenMP 6.0 support on top of UMF.
• CAL: malloc/free intercept based on UMF

https://github.com/oneapi -src/unified-memory-framework/

https://github.com/oneapi-src/unified-memory-framework/

Developer Software Engineering 12Software @ Intel

Summary

• UMF unifies interfaces to work with memory hierarchies.
• UMF improves efficiency by code/technology reuse.

• Set of building blocks to adapt to particular needs.
• UMF handles interop between runtimes by aggregating data about all

allocations.

• Call to action:
• Try out UMF when dealing with heterogenous memory or building a custom

memory allocator
• Extra resources:

• https://oneapi-src.github.io/unified-memory-framework/introduction.html

https://oneapi-src.github.io/unified-memory-framework/introduction.html

Developer Software Engineering 14Software @ Intel

Value Proposition

• For developers:
• unified interfaces to work with memory kinds.
• drive efficiency across teams.

• For customers:
• better interoperability between runtimes by aggregating data about all

allocations.
• For industry:

• public open-source project to simplify the adoption of heterogeneous memory
technologies.

Developer Software Engineering 15Software @ Intel

Vision

• Enable application performance and scalability with the use of memory
kinds/hierarchy by and across XPUs.

• Provide simple consistent mechanisms for SW developers to work with
memory hierarchies and functions that operate on memory.

• Provide appropriate abstraction layers for HW innovation in the areas
of memory technology, memory locality, and memory offloads.

Developer Software Engineering 16Software @ Intel

UMF Structure

• Single repository. Single source base. Single shared library (libumf.so)
• Provides different sets of APIs:

• Pool creation API.
• A low-level API to explicitly build memory allocators/pools. Users explicitly choose heap

manager and memory provider.
• Targeted allocator developers.

• A high-level API (Memkind replacement). Predefined pools based on the memory topology.
• Targeted application developers.

• Allocation API.
• malloc-like API to allocate from a particular pool.

• Memory Selector API.
• Choose a memory device based on user constraints.

• E.g. High bandwidth memory, Lowest latency, Highest capacity, etc.
• Observability API

• Allows to retrieve memory properties of a memory allocated via UMF.
• Provides an ability to create IPC handles.

https://github.com/oneapi -src/unified-memory-framework/

https://github.com/oneapi-src/unified-memory-framework/

Developer Software Engineering 17Software @ Intel

Observability and IPC APIs

// Some library creates the pool and allocates from it
umf_memory_pool_handle_t somePool = …;
// Allocate memory from some pool
void* ptr = umfPoolMalloc(somePool, 1024);

Library A:

// Another library fetches the pool the pointer belongs to
umf_memory_pool_handle_t retrievedPool = umfPoolByPtr(ptr);

// Work in progress!!!
// UMF allows to get properties of a particular allocation
// E.g. NUMA nodes, device (CPU, GPU), if GPU – device, context
umf_alloc_properties_t allocProperties;
umfGetAllocProperties(ptr, &allocProperties);

// For scale-out UMF allows to get IPC handles
umf_ipc_handle_t ipcHandle;
size_t handleSize;
umfGetIPCHandle(ptr, &ipcHandle, &handleSize);

send_to_another_process(ipcHandle, handleSize);

Library B:

Process 1:

// Another library fetches the pool the pointer belongs to
umf_ipc_handle_t ipcHandle;

receive_from_another_process(&ipcHandle);

// Create memory pool to open IPC handle
umf_memory_pool_handle_t somePool = …;

// Mmap memory pointed by IPC handle to the current process
void* ptr = NULL;
umfOpenIPCHandle(somePool, ipcHandle, &ptr);

Library B:

Process 2:

	Unified Memory Framework
	Agenda
	Heterogenous memory systems
	Unified Memory Framework (UMF)
	Common Memory Allocation Structure
	UMF: High-Level Idea
	UMF Architecture
	High-level API: memspaces
	Basic Example
	UMF: Interop capabilities
	Current Status and Plans for 2024
	Summary
	Slide Number 13
	Value Proposition
	Vision
	UMF Structure
	Observability and IPC APIs

