Unified Memory Framework

Presenter:Igor Chorazewicz (igor.chorazewicz@imntelcom)

Authors:Serge1Vinogradov, Igor Chorazewicz, Piotr Balcer,Rafal Rudnicki

=

intel. DSC

Agenda

* Heterogenous memory systems challenges
 Solving the challenges using UMF

 UMF architecture overview

» Status and plans

« Summary

DSG Developer Software Engineering Software @ Intel

intel.

2

Heterogenous memory systems

* Increased demand for data processing leads to memory subsystems
of modern server platforms becoming heterogeneous

* A single application can leverage multiple types of memory

* Local DRAM

« HBM

« CXL-attached memory
 GPU memory

 Utilizing heterogenous memory requires:

« A way to discover available memory resources
* Deciding where to place the data and how to migrate it between memory types
* Interacting with different APIs for allocation & data migration

DSG Developer Software Engineering Software @ Intel |nte|

3

https://github.com/oneapi -src/unified-memory-framework/

Unified Memory Framework (UMF)

Goal Unify path for heterogeneous memory allocations and resource
discovery among highedevel runtimes (SYCL, OpenMP, Unified
Runtime, MPlpneCCL, etc.) and external libs/applications.

What it is:

A single project to accumulate technologies related to memory
management.

 Flexible mixand-match API allows tuning for a particular use case.

« Complement (not compete with) OS capabilities.
« OS - page-size granularity; Applications object-level abstraction.

DSG Developer Software Engineering Software @ Intel inteL

4

https://github.com/oneapi-src/unified-memory-framework/

Common Memory Allocation Structure

Application-level interfaces:

Appl ICatIOn Object-size granularity
Fine grain allocations
Allocator API .
C++compliant allocators & memory resources
v Memory pooling/caching:
C-style API Pools big chunks from memory
(malloc/free) provider _
Heap manager - . Serylce app aIIocatlo.ns o
y * Various implementations optimized
for different use cases
Heap Manager « (concurrency, fragmentation, etc.)

. / Y \ -
Memory prOVIder System-level interface:
P VirtualAlloc | | - GPU Drive L Mientbe enpansive.

DSG Developer Software Engineering Software @ Intel inteL

UMF: High-Level Idea

Regular malloc flow

User
Mode

Kernel
Mode

Application

what (size, alignment)o allocate]

OS

mmap

Local DRAM

UMF flow

Application

UMF

\ 4

[what & where (in which pooffp allocate]

umfPoolMalloc

Driver

O

S
Ooca

GPU Local Local Remote Memory
Memory DRAM HBM over CXL.mem

* Mapped to different HW

» Multiple heaps with different

properties

» Keep certain kinds of

allocations separate from
others

J

« Expose different kinds of memory as pools/heaps with different properties and behavior. For example:
Pool 1 resides on GPU.
Pool 2 relies on OS memory tieringlo the same as regular malloc.

Pool 3 is bound to DRAM &XL.mem(allows OS to migrate pages between DRAM ar@XL.membut prohibits migration to

HBM). Heap manager can do page monitoring (like Linux DAMON) and make advice to OS (madvise).

DSG Developer Software Engineering

Software @ Intel

intel. o

UMF Architecture

« UMF is a framework to build allocators and organize
memory pools.

» Pool is a combination of pool manager and memory
provider.
« Memory provider does actual memory (coarsgrain) allocations.

» Heap manager manages the pool and services figgain malloc/free
request.

 UMF defines heap manager and memory provider
interfaces.

» Provides implementations (disjoint pool, scalable pool, OS provider) g
heap managers and memory providers.

« Heap managers and Memory provider implementations are static
libraries that can be linked on demand.

« External heap managers and memory providers are allowed.
« Users can choose existing ones or provide their own.

DSG Developer Software Engineering Software @ Intel

Observability Allocation Pool creation Memory Selector
; API | AP AP o API
__________ Voo |
Pool managers interface Memspaces
disjoint | | scalable| | jemalloc
pool pool pool 1
¥y y A4 T
e el -~ opolo
Memory provider interfacel . pology
Discovery
> Memory tracker
v v
LO provider OS provider
UMF
\ 4

intel.

High-level APImemspaces

 Memspaceis an abstraction over memory resources: it's a collection of memory targets.
« Memspace can be used as a means of discovery or for pool creation

 Memory target represents a single memory sourcenumanode, memorymapped file, etc.)
and can have certain properties (e.g. latency, bandwidth, capacity)

 UMF exposes predefinedmemspaces(HOST ALL, HBM, LOWEST_LATENCY, etc.)

DSG Developer Software Engineering

memspace HOST _ALL memspace
HBM
Memory_target: Memory_ target : Memory_ target :
Numa O Numa 1 Numa 1
Software @ Intel

intel.

8

Basic Example

// Create memory pool of HBM memory from predefined memspace

umf memory pool handle t hbmPool = NULL;

umf_memspace_handle_t MEMSPACE_HBW = umfMemspaceHighestBandwidthGet();
umfPoolCreateFromMemspace (MEMSPACE_HBW, NULL, &hbmPool);

// Create memory pool on top of the highest capacity memory

umf memory pool handle t highCapPool = NULL;

umf _memspace _handle t MEMSPACE_HIGH_CAP = umfMemspaceHighestCapacityGet();
umfPoolCreateFromMemspace (MEMSPACE_HIGH_CAP, NULL, &highCapPool);

Poolcreation
flow

// Allocate HBM memory from the pool
void* ptrl = umfPoolMalloc(hbmPool, 1024);

// Allocate memory from the highest capacity pool
void* ptr2 = umfPoolMalloc(highCapPool, 1024);

malloc/free flow

umfFree(ptrl); // Pool is found automatically
umfFree(ptr2); // Pool is found automatically

DSG Developer Software Engineering Software @ Intel |nte|

UMF: Interop capabillities

Memory is a key for efficient interoperability

 Modern applications are complex.

» Multiple libraries/runtimes might be used by a single
application.

 Memory allocated by one library might be used by another
library.
 UMF aggregates data about allocations.
« Can provide memory properties of allocated regions.
« ExampleMemory allocated by OpenMP/SYCL is used by
MPI for scaleout. UMF can tell:
* Whether it is OSmanaged or GPU driveimanaged memory.
« Which NUMA node is used.
* MPI can get IPC handle to map memory to another process.

DSG Developer Software Engineering Software @ Intel

Application

Allocate
memory Use previously
allocated memory

Allocation API Observability API

UMF

Driver || OS
OoC

GPU Local Local
Memory DRAM HBM

Remote Memory

over CXL.mem

intel.

10

https://github.com/oneapi -src/unified-memory-framework/

Current Status and Plans for 2024

* First release as internal component oheAP12025.0 in 2024Q3.
* Open-source repo is created for open development.

» Key stakeholders:
 Unified RuntimetJSM memory pooling (used by SYCL and OpenMP offload).
* Intel MPlinterop with SYCL and OpenMP based on Observability & IPC API.
« oneCCL:memory pooling for big allocations and IPC functionality.
* libiomp: build OpenMP 6.0 support on top of UMF.
« CAL: malloc/free intercept based on UMF

)SE Developer Software Engineering Software @ Intel intel. I

https://github.com/oneapi-src/unified-memory-framework/

Summary

 UMF unifies interfaces to work with memory hierarchies.

* UMF improves efficiency by code/technology reuse.
» Set of building blocks to adapt to particular needs.

« UMF handles interop between runtimes by aggregating data about all
allocations.

 Call to action:

* Try out UMF when dealing with heterogenous memory or building a custom
memory allocator

e Extra resources:
* https://oneapi-src.github.io/unifiedmemory-framework/introduction.htmi

DSG Developer Software Engineering Software @ Intel inteL

https://oneapi-src.github.io/unified-memory-framework/introduction.html

intel

Value Proposition

* For developers:
* unified interfaces to work with memory kinds.
« drive efficiency across teams.

* For customers:

* better interoperability between runtimes by aggregating data about all
allocations.

* For industry:

 public open-source project to simplify the adoption of heterogeneous memory
technologies.

DSG Developer Software Engineering Software @ Intel inteL

“

Vision
* Enable application performance and scalability with the use of memory

kinds/hierarchy by and across XPUs.

* Provide simple consistent mechanisms for SW developers to work with
memory hierarchies and functions that operate on memory.

* Provide appropriate abstraction layers for HW innovation in the areas
of memory technology, memory locality, and memory offloads.

DSG Developer Software Engineering Software @ Intel inteL

5

https://github.com/oneapi -src/unified-memory-framework/

UMF Structure

* Single repository. Single source base. Single shared library (libumf.so)

* Provides different sets of APIs:

* Pool creation API.

« A low-level API to explicitly build memory allocators/pools. Users explicitly choose heap
manager and memory provider.

» Targeted allocator developers.
* A high-level APl (Memkind replacement). Predefined pools based on the memory topology.
» Targeted application developers.

 Allocation API.
* malloclike API to allocate from a particular pool.
« Memory Selector API

« Choose a memory device based on user constraints.
« E.g. High bandwidth memory, Lowest latency, Highest capacity, etc.

« Observability API

» Allows to retrieve memory properties of a memory allocated via UMF.
* Provides an ability to create IPC handles.

)SE Developer Software Engineering Software @ Intel intel. 6

https://github.com/oneapi-src/unified-memory-framework/

Observability and IPC APlIs

Process I

Library A:

// Some library creates the pool and allocates from it
umf_memory_pool_handle_t somePool = ..;

// Allocate memory from some pool

void* ptr = umfPoolMalloc(somePool, 1024);

Library B:

Process 2:

Library B:

// Another library fetches the pool the pointer belongs to
umf_memory_pool_handle_t retrievedPool = umfPoolByPtr(ptr);

// Work in progress!!!

// UMF allows to get properties of a particular allocation

// E.g. NUMA nodes, device (CPU, GPU), if GPU - device, context
umf_alloc_properties_t allocProperties;
umfGetAllocProperties(ptr, &allocProperties);

// For scale-out UMF allows to get IPC handles
umf_ipc_handle_t ipcHandle;

size_t handleSize;

umfGetIPCHandle(ptr, &ipcHandle, &handleSize);

send_to_another_process(ipcHandle, handleSize);

// Another library fetches the pool the pointer belongs to
umf_ipc_handle_t ipcHandle;

receive_from_another_process(&ipcHandle);

// Create memory pool to open IPC handle
umf_memory_pool handle_t somePool = .;

// Mmap memory pointed by IPC handle to the current process
void* ptr = NULL;
umfOpenIPCHandle(somePool, ipcHandle, &ptr);

DSG Developer Software Engineering

Software @ Intel

intel.

17

	Unified Memory Framework
	Agenda
	Heterogenous memory systems
	Unified Memory Framework (UMF)
	Common Memory Allocation Structure
	UMF: High-Level Idea
	UMF Architecture
	High-level API: memspaces
	Basic Example
	UMF: Interop capabilities
	Current Status and Plans for 2024
	Summary
	Slide Number 13
	Value Proposition
	Vision
	UMF Structure
	Observability and IPC APIs

