SAMSUNG




SAMSUNG

Overview

« SPDK codebase continues to be active
>1500 patches since September 2023 release

« SPDK contributors continue to be varied
« Almost 100 contributors from 25+ companies

- Key areas of development (recent and ongoing)

« Accelerators and memory domains (Ben!)
Power savings
NVMe over Fabrics
Logical volumes and RAID
- Tracing
NUMA



SAMSUNG

Power Savings

- Two avenues towards power savings

Schedulers and Governors
Interrupt Mode

« Schedulers and Governors

More sophisticated scheduling algorithms
Scheduling period preemption
Better amortization of TCP syscall overhead across multiple spdk_threads

 Interrupt Mode

Plumb SPDK socket layer for interrupts

Add interrupt support to NVMe target (TCP, RDMA)

Add PCle device interrupt support to SPDK NVMe driver
Add interrupt support to bdev/nvme module

« Work in progress
Parts will start landing in v24.09 release



NVMe over Fabrics

Authentication support (v24.05)

- Target and host driver support
Pluggable keyring library

Namespace masking (v24.05)

Limit namespaces in controller based on hostngn

Discovery referrals (v24.01)

Custom reservation handlers (v24.01)

Better NVMe feature passthrough

Enable NVMe-oF hosts to observe NVMe-specific parameters
FDP (v24.05)
- optperf, atomic (target v24.09)

SAMSUNG



SAMSUNG

Logical Volumes and RAID

 Logical Volumes
Extend Ivolstore at runtime
Better unmap support
Shallow copies

* RAID

Progressing towards a REAL RAID stack
RAID-T

RAID-5F

On-disk metadatao

Rebuild



SAMSUNG

Tracing

« Tracepoint owners
Map event to specific bdev, TCP connection, NVMe queue, etc.

- Enable tracing for user-created pthreads

- New tracepoints and related features

Current queue depth for existing nvme, bdev, nvmf IO tracepoints
« Sock (TCP) layer tracepoints
Map events to spdk_thread name



SAMSUNG

NUMA

« SPDK has ignored NUMA to date

» Increased focus with chiplet designs

- NUMA optimizations in progress

Allocate PCle CQs from socket-local memory

Map NVMe host controller (PCle, TCP, RDMA) to socket ID

Map bdevs to socket ID

Map NVMe target controller (TCP, RDMA) to socket ID

Allocate benchmarking (fio, SPDK tools) buffers based on socket ID
Plumb iobuf to support per-socket buffer pools

Allocate target application buffers based on heuristics (I/0 type, nvmf socket ID,
bdev socket ID)



Thank You



