
1

GPUs as Data Access Engines
Thursday Aug 8, 2024, 8:30-9:35am session

CJ Newburn, Distinguished Engineer, NVIDIA GPU Cloud

1
©2024 Conference Concepts,

Inc. All Rights Reserved

2

Trends
New considerations as we scale up and out

• Scaled data sets won’t fit in the memory of one GPU or even of many nodes → use NVMe

• Can’t reach all data via loads and stores → need new API

• New workloads that are bottlenecked on data access vs. compute

• Key-value/object stores are gaining traction as a way to access data → custom APIs for objects

• Too much data for apps to track → serverless, with dataset services, orchestration

3

A new class of problems on scaled data
GPU becomes not only a compute monster, but also a fine-grained data access engine

Both use O(100K) threads to accelerate, compute or IO

3

• Huge data that are too big to reach with loads and stores
• Partitioning, caching, communication complexity
• Error handling at scale is problematic
• NVSHMEM for memory; something more for mem+storage
→ new API family that covers data anywhere

• Accesses are initiated from the GPU (or CPU)
• GPUDirect Async Kernel Initiated Storage, not just GDS
• Example: graph traversal based on reading node data

• Vast volume of accesses, 1+ per GPU thread
→ greatest benefit with fine granularity

GPU
P
C
I
e

Requests

How do we most efficiently squirt
O(100K) requests/responses through the PCIe pins?

pins

4

New class of applications → new programming model
Fast, sparse access to massive data

• GPU becomes not only a compute monster but also a data
access monster

• Huge volume of fine-grained accesses from each of O(100K)
GPU threads

• For huge data sets, you eventually can’t do load/store → this is
the new API for data of unbounded size in memory/storage

• NVMe brings compelling TCO vs. HBM/DRAM
• Open 1T edge graph problems to those with only 1 GPU or 1 node

• Relieve the “out of memory” management for greater
productivity

Graph analytics and Graph neural networks
(100GB-100TB)

Nodes/edges/embeddings
WholeGraph, cuGraph, …

Data analytics (100GB-1PB)
select row/column
based on compute

RAPIDS

Vector Search (up to 40PB)
specialized algos on
embeddings and files

cuVS

RAG/VectorDB (>600GB)
ANN algos on embeddings

cuVS

5

Emerging application domains
that motivate a new programming model

Applications
Graph Neural Networks (GNNs) – graph + feature store

- Neither the graph nor the data fit into a GPU for 1T edges
- High-value embeddings for entities and relationships
- Key parts of recommendation and bad-actor detection systems
- GNNs improve accuracy over other embedding types

Vector search/vectorDB – vector store
- NeMo Retriever, NVIDIA RAFT in RAG-LLM
- Data deduplication to prep for foundational training of trillion-token LLMs

LLM fine-tuning joint with GNN embeddings benefits from huge key value service
Graph analytics available in cuGraph:

- Personalized pagerank, community detection on huge graphs
- Distributed sampling and partitioning for GNN models

Common need: simple management of data larger than physical memory of host + device
- Avoid OOM (Out of Memory) errors
- Typically requires caches, partitioning, multi-GPU/multi-node communication
- Needs to be re-created for each application unless we have a common solution

https://nvidianews.nvidia.com/news/nemo-retriever-generative-ai-microservice

6

Characteristics and usages across scale

1 GPU discrete
1-10TB, tabular data

Local NVMe

Data science

Exploratory data analysis
Model creation

Train a couple of models overnight

256 GPU SuperPOD
100+TB, transaction graph

TOR NVMes or RDMA filers

Anomaly detection, RecSys
FSI, cybersecurity, retail

Load and build graph
Sample and train

Inference to create embeddings

8 GPU HGX
20-40TB, 3D proteins
Local or TOR NVMes

Molecular generative AI
BioNemo, Pharma

Input knowledge graph
Build hetero molecular graphs
Molecular diffusion inference

Docking analysis

7

Application layering example

• cuGraph service implementation changes, application does not
• Now training can proceed independent from data size
• No need to manage memory system, caching, partitioning, big

improvement in maintainability for GNN training at scale

Delivering new capabilities through existing stack

Captive NVMe

Embeddings

Embedding
Vector DB

Trained
Model

Recommendation
System

Client

cuGraph

GNN Training
Framework

Host memory

GPU memory

SCADA

Server

SCADA

Server

8

GPU-initiated scaled data architecture
GPU becomes an autonomous highly parallel data access engine

GPU client

Work on
results

Threads gen request
Threads
generate
requests

Cache
Consume and

work on
results

Data server

Process requests
and DMAs Data
in a trusted
component, e.g.
on GPU

Submit
requests

Control

Data

NVMes

● Request, initiation, service, and consumption all happen within a GPU kernel
● GDA KI Storage enables data IO accesses that are both initiated and triggered by GPU
● Requests are processed in a trusted, privileged server with access to storage
● Features a key pillar of Magnum IO: flexible abstraction

9

Simplified architecture
3 views: user, tiered, backing storage

ServerClient

Local/Private

Remote/
SharedApp GPU $

IO Proc
preproc

St
o

i/f

User view Tiered view = SCADA Backing storage view

AP
I/

xl
at

e

xl
at

e

ge
t/p

ut

10

Simplified architecture
3 views: user, tiered, backing storage

ServerClient

Local/Private

Remote/
SharedApp

St
o

i/f

User view Tiered view = SCADA Backing storage view

AP
I/x

la
te

xl
at

e

ge
t/p

ut Remote/
SharedRemote/

SharedG
PU

$

R
eq

/
R

es
p

Sv
c

Pr
e-

pr
oc

C
ac

he
 ($

)

R
eq

/
R

es
p

Sv
c

Pr
e-

pr
oc

R
eq

Sv

c

C
om

pu
te

11

Implications

• Huge, distributed data
• ↑ separation of data from work → tiered/hierarchical locality with data orchestration

• Abstraction over complexity
• Provide easy onramp in addition to near-full control
• Handle fragility of unreliable storage and its error conditions
• Retain cost transparency - queriable cost, if not directly implied by API

• User interfaces
• Could be new for SOL but must also support legacy
• Set of non-owning views; vernacular data collections vs. just mdspan
• Provide usage hints
• Dev/tuner/DC admin specify preprocessing and transformation down in data network

• Both config - this might happen, between whom and how
• And on demand - get me this

12

Rethinking interfaces for the modern data center
Internal name: SCADA for scaled accelerated data access

- Scale: Single API for data access independent of scale
• Fit where you couldn’t before, e.g. 10 TB in one node, avoid OOM worries
• Transparently scale both data set size and size of compute cluster

- Higher abstraction: “Serverless access” is the way of the modern data center
• Front end: handle caching, avoid partitioning, communicate among multi-GPU/multi-node
• Back end: app accesses dataset X, relegates details of where/how data is stored
• Data platform tools could manage curation, locality, sharding, staging
• Acceleration with best use of GPU threads, memory management, and topology-tuned communication

- Easy enablement: Low-level interface that leaves application layers unchanged
- Fundamentally-low TCO: Reduce the cost of storage data

• Huge data → huge memory → huge cost
• Applications of low computational complexity use HBM only for memory vs. compute
• Cheap NVMes make datacenters more efficient

13

Two SCADA research prototypes: BaM, GIDS
Preparing for trial integration into production stacks

• Follow-on to an earlier OSS academic prototype
• Big accelerator memory, BaM: “GPU-Initiated On-Demand High-Throughput

Storage Access in the BaM System Architecture”, ASPLOS 2023:
https://doi.org/10.1145/3575693.3575748

• GIDS: “Accelerating Sampling and Aggregation Operations in GNN Frameworks
with GPU-Initiated Direct Storage Accesses”, VLDB’24:
https://arxiv.org/abs/2306.16384

• Currently a functional prototype, first used by cuGraph
• Easy integration into widely used package manager

• Templated C++ header library, specialized for app objects
• Familiar programmer abstractions

• GPU cache aggregates to a smaller number of IOs
• Optimizing IO queue interactions for O(100K) GPU threads

https://doi.org/10.1145/3575693.3575748
https://arxiv.org/abs/2306.16384

14

Progression of SCADA services
Start with simpler cases, grow over time with your input

• Common infrastructure
• Header-centric client library in front of opaque implementation
• Memory managed by app, SCADA provides APIs to allocate and free

• Start with a simple but critical service like swap, then extend
• App on CPU reads all data from storage into GPU, as it always has
• GPU threads write data into SCADA and read it back later
• Relieve out of memory (OOM) avoidance with unbounded capacity
• API for contiguous arrays

• We’d love your feedback for the next APIs and services

App

File
system

Private
NVMes

.h client
GPU cache

Server

load/store spill/fill

15

• Data lookup acceleration enables higher throughput by reducing the IO bottleneck to (feature) data
• Transparent data reuse benefit: cache bw (400-600 GB/s) >> PCIe into the GPU (24 GB/s for Gen4)
• IO processing (16 MIOPs) keeps up with PCIe-saturating NVMe IOPs rates (6 MIOPs for Gen4)

• GPUs are latency tolerant - HW context switching covers miss latency

Cache
processing

Request
generation IO

processing
NVMe
access

NVGNN
Request: 45M IOPs
Consume: 180GB/s

Hit : <150 MIOPs
<600 GB/s

Miss : ~100M IOPs
<400 GB/s

16 MIOps completion
16x4KB=64 GB/s

4 NVMe Gen4 drives
- 6 MIOPs @ 4KB

GPU.PCIe Gen4
- 24GB/s

GPU tput on a single A100
6910 CUDA cores @1.41GHz

Transfer size = 4KB

GPU batch
processing

Performance results: the GPU as a data access monster
Bottleneck is NVMe and pin bandwidth, not GPU code

16

Random reads mostly saturate PCIe Gen4 with 4 Gen4 drives
Initial Big Accelerator Memory (BaM)* research prototype validates perf trends

▪ UIUC-NVIDIA BaM replaces the NVMe driver to enable
GPU-initiated IO transfers to/from NVMe

▪ 6+ Million IOPs, 23+ GB/s on 4KB random reads
▪ 0% CPU utilization

▪ BaM NVMe Block Bench
▪ Microbenchmark to stress storage through BaM
▪ Scales GPU requests at 4KB against storage devices

and measures operations/s and GB/s in 4KB xfers.
▪ 6 drives vs. 4 bumps up MIOPs and GB/s slightly

BaM and GIDS are UIUC-NVIDIA Research prototype projects and not intended for general release.
DGX A100 GPU

23.2 GB/s

6.1 MIOPs

17

2x Gen5 v Gen4 performance

Explicit storage IO is 25x of mmap, faster media is better

GIDS with IGBH-Full training. NVMe performance results measured by Micron’s Data Center Workload Engineering team, baseline (mmap) performance results measured by NVIDIA’s Storage Software team on a similar system.
Systems under test: Gen4: 2x AMD EPYC 7713, 64-core, 1TB DDR4, Micron 9400 PRO 8TB, NVIDIA A100-80GB GPU, Ubuntu 20.04 LTS (5.4.0-144), NVIDIA Driver 535.113.01, CUDA 12.2, DGL 1.1.2

Gen5: Dell R7625, 2x AMD EPYC 9274F, 24-core, 1TB DDR5, Micron Gen5 SSD, NVIDIA H100-80GB GPU, Ubuntu 20.04 LTS (5.4.0-144), NVIDIA Driver 535.113.01, CUDA 12.2, DGL 1.1.2
Work based on paper "GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture” https://arxiv.org/abs/2203.04910 and using https://github.com/ZaidQureshi/bam

Direct GPU access vs. faulting through CPU to storage with BaM and high-performance Gen5 NVMe brings 25+x for GNN Training

Workload Execution Time
(seconds)

Baseline
(mmap)
Gen4/A100

BaM Enabled Gen5 v Gen4
PerformanceMicron

Gen5/H100
Micron
Gen4

Feature Aggregation 1,130 (99%) 18.6 (83%) 35.0 2x
Training 2.1 (0.2%) 0.73 (3%) 3.6 5x
End-to-End 1,137 22.4 43.2 2x
E2E Improvement over Baseline 50x 26x
Feature Aggregation Improvement 61x 32x

25x Micron performance improvement over mmap on Gen4

Feature Aggregation depends on SSD performance
It’s 99% of execution time in the baseline, 80% of tuned

Sampling and training depend on GPU performance

https://arxiv.org/abs/2203.04910
https://github.com/ZaidQureshi/bam

18

GNN on GPU induces queue depths 10-100x of CPU
Investigated with Micron NVMe IO Trace tool

Using GPU-initiated direct storage (GIDS) framework

A trace of the IO pattern at the SSD level shows
interesting behavior:

– Near drive’s max IO performance
– 10-100x SSD queue depth wrt CPU
– 99% small block reads

GIDS with BaM presents a
challenging SSD workload:

High-Performance NVMe is Required

Max GIDS QD O(10000) from GPU is very high

GIDS with IGBH-Full training. NVMe IO trace measured by Micron’s Data Center Workload Engineering team.
System under test: 2x AMD EPYC 7713, 64-core, 1TB DDR4, 4 Micron 9400 PRO 8TB, 1x NVIDIA A100-80GB GPU, Ubuntu 20.04 LTS (5.4.0-144), NVIDIA Driver 535.113.01, CUDA 12.2, DGL 1.1.2
Work based on paper "GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture” https://arxiv.org/abs/2203.04910 and using https://github.com/ZaidQureshi/bam

Typical CPU QD O(100)

Min GIDS QD O(1000)

SSD
QD

Over time throughout run

https://arxiv.org/abs/2203.04910
https://github.com/ZaidQureshi/bam

19

Suitability

• GPU-initiated, dynamic, per thread
• Each GPU thread dynamically forms and makes its own request
• If you know the batch ahead of time, use GPUDirect Storage

• Fine-grained, high throughput
• Could be 4B-4KB
• If coarse, you can saturate pins with very few threads

• Unbounded data size
• Can’t reliably fit in GPU high-bandwidth memory
• If it could, you could just stick with load/store

• Data access bound
• Focus is on data access as a bottleneck
• If compute bound, HBM in very many nodes is free

20

Benefits

• Scale
• Fit problems into a small number of GPUs by spilling into NVMe storage
• Even if somewhat slower (e.g. 1 NVMe) – what’s your slowdown threshold?

• TCO
• For a given perf level, offer greater cost effectiveness with NVMes vs. HBM or DDR

• Performance
• As we tune over time, potentially improve perf
• Limited by PCIe bandwidth into GPUs and # of drives

21

Call to action for SCADA

• Storage technologists
• Give us lots of IOPs!
• Pack in fine-grained transfers across PCIe

• App developers and users
• Share need for more data capacity than will fit in GPU-CPU memory for compute
• Specify kinds of services of interest, e.g. array, swap, key-value, VectorDB, dataframe?
• Specify details on product stack support, deployment models

• Infrastructure developers
• Layer on SCADA as has been done for NVSHMEM, e.g. Kokkos perf-portable framework
• Look at new venues for fine-grained interleaving of compute and communication, e.g. LLNL

Come help chart the future of turning the GPU into a data access engine

	GPUs as Data Access Engines
	Trends
	A new class of problems on scaled data
	New class of applications → new programming model
	Emerging application domains �that motivate a new programming model
	Slide Number 6
	Application layering example
	GPU-initiated scaled data architecture
	Simplified architecture
	Simplified architecture
	Implications
	Rethinking interfaces for the modern data center
	Two SCADA research prototypes: BaM, GIDS
	Progression of SCADA services
	Slide Number 15
	Random reads mostly saturate PCIe Gen4 with 4 Gen4 drives
Initial Big Accelerator Memory (BaM)* research prototype validates perf trends
	Explicit storage IO is 25x of mmap, faster media is better
	GNN on GPU induces queue depths 10-100x of CPU
Investigated with Micron NVMe™ IO Trace tool
	Suitability
	Benefits
	Call to action for SCADA

