
Architected for Performance

NVM Express® Support for CXL®

Sponsored by NVM Express organization, the owner of NVMe® Specifications

2

Speakers

Jason Molgaard Bill Martin

3

Agenda

• Combining CXL® and NVMe® Technologies

• Computational Storage a Use for combining CXL and NVMe Technologies

• Computational Storage Use Cases

4

Combining NVMe® Technology and CXL® Protocol

5

Why Combine CXL® and NVMe® Technologies?

• NVMe devices are providing host accessible memory in the form of Subsystem
Local Memory (SLM)

• Accessing this memory via a memory protocol is more efficient

• Allows cache coherency of that memory

• Allows peer-to-peer communication using a memory model

• Computational Storage Use

• Computational Storage Drives have more host accessible memory than a traditional
Storage Device

• Benefits from peer-to-peer communication (more on this later)

6

Benefits of CXL® Load/Store Access
• What does CXL bring to the table that benefits NVMe® technology?

• Allows coherent memory between a host and one or more devices with SLM

• Low latency, fine granularity path to access SLM

• CXL.mem allows direct Load/Store access to SLM

• Allows Peer-to-Peer communication using CXL.mem

• How is this different from CMB/PMR?

• CXL allows both coherency with host memory and MMIO space – CMB/PMR only allows host Load/Store access over
PCIe® architecture using uncached MMIO space

• CXL provides coherency for device access to host memory

• CXL protocol is more efficient than PCIe memory access protocol
• CXL enables lower latency and higher throughput
• CXL protocol has less strict ordering rules than PCIe memory access protocol

7

Benefits of Coherency

• All devices perceive the same view of memory

• Memory viewed between devices is consistent

• All devices perceive the same view of shared data

• Data is up-to-date

• Devices and hosts can push data to each other or pull data from each other

• This includes device-to-device communication

• Avoids or reduces copies that can grow stale

8

Computational Storage
A Use for CXL® and NVMe® Technologies Together

9

Computational Storage Architecture
Computational Storage Processor Computational Storage ArrayComputational Storage Drive

Host 1 Host n
CS

Driver

I/OMGMT

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Processor (CSP)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Device Storage

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Computational Storage Drive (CSD)

Host 1 Host n
CS

Driver

I/OMGMT

Storage
Controller

Storage Device
or CSD

Device Memory

Computational Storage Resource(s)

Computational
Storage

Engine (CSE)
CSEECSEE

CSFCSF

Resource Repository
CSF CSEECSEECSF

FDM
AFDMAFDM

Fabric (PCIe, Ethernet, etc)

CS
Driver

CS
DriverCS

Driver

Array
Control

Storage Device
or CSD

Transparent
Storage
Access

Proxied
Storage
Access

Computational Storage Array (CSA)

CSx = Computational Storage Device – CSP or CSD or CSA

10

A Deeper Dive of the CSx Resources

• CSR - Computational Storage Resources are the resources
available in a CSx necessary for that CSx to store and execute a
CSF

• CSF - A Computational Storage Function is a set of specific
operations that may be configured and executed by a CSE in a
CSEE

• CSE - Computational Storage Engine is a CSR that is able to be
programmed to provide one or more specific operation(s)

• CSEE - A Computational Storage Engine Environment is an
operating environment space for the CSE

• FDM - Function Data Memory is device memory that is available
for CSFs to use for data that is used or generated as part of the
operation of the CSF

• AFDM - Allocated Function Data Memory is a portion of FDM that
is allocated for one or more specific instances of a CSF operation

• Resource Repository – Resources that are available but not
activated

11

NVMe® Computational Storage Basics
• Computational Programs command set

introduced Compute Namespace

• Subsystem Local Memory (SLM) command set
introduced Memory Namespace

• Compute Namespace can access SLM
Namespace using a Memory Range Set

• CSE = Compute Engine

• CSF = Program

• Function Data Memory (FDM) = SLM

• Allocated FDM = Memory Range Set

• Device Storage = NVM Namespace

Memory Range
Set®

12

NVMe® TP4184
Host Addressable SLM

13

Host Addressable SLM – NVMe® TP4184
• NVMe TP4184 is in the Architecture Definition phase

• SLM is addressed at a Host Physical Address (HPA)
• PCIe® BAR; or
• CXL®

• SLM memory can have a virtual mapping for host applications
• Host application does not have to switch contexts for SLM memory access

• SLM memory is accessible by the host and the device

• SLM can be read/written with:
• Host Load/Store commands
• CXL.mem commands

• Compute is triggered with Computational Programs commands
• Utilizes the host addressable SLM

• Allows P2P data movement based upon HPA

• SLM is still accessible using the SLM Command Set Memory Read and Memory Write commands

14

Potential Config Flow for CXL® SLM
• NVMe® device with CXL SLM is similar to a CXL Type 2 device

• Plan for a CXL Type 2 device is for the OS to do standard
PCIe® configuration (e.g. allocating BAR space) and then load
driver CXL configuration using device’s PCI ID

• NVMe device with CXL SLM will use an enhanced NVMe driver
• Enhanced for CXL based SLM configuration
• Device will use existing NVMe Class Code and may use a new

Programming Interface (PI) identifier to expose CXL capabilities

• Device driver discovers device capabilities and calls OS CXL
core services for CXL Memory set up

• CXL core services offers kernel interfaces for the driver to set up
required CXL capabilities such as HDM decoders and return
necessary information (e.g. HPA range)

• Device CXL memory allocation is controlled by the NVMe driver

• Linux support for CXL Type 2 devices is not yet available

• Driver owns runtime management of Device CXL memory

• Host does PCIe device
discovery/configuration

• Sets Device BAR space
• Load device driver

• Device driver performs
standard NVMe config

• Discovers SLM NS
support

CXL SLM?

Yes

No

• Device driver requests
CXL Memory set up
using Kernel Interfaces

Kernel CXL Core Services

• Discovers CXL
capabilities

• Sets up HDM
decoders for device
memory to HPA

• Returns HDM
decoder maps and
memory properties to
Device driver

Continue

Dev Info,
Memory Size

HPA Info,
 properties

Per-Port High-Level Config Flow

Note:
It is assumed that each device
port maps to a single NVMe controller

• Device Driver sets up
HPA<->SLM NS

15

Host – CXL® SLM Address Mapping

NSID 1: CXL SLM

NSID 3: SLM I/O

HPA Base Size

HDM Decoders
(per NVMe Controller) NSID= 1 Offset

SLM NVMe I/O Access method

Device SLM Address Space
Programmed by
Host CXL core driver

App Allocated Range
In SLM NSID =1

App
Host CPU
Address
Translation

CXL.Mem ld/st access method

CXL SLM VA
Access

NVMe® Subsystem

Host HPA Space

SLM NSID 1

HDM allocation in HPA space
Notes:
• One HDM Decoder can map to 1 or more

SLM namespaces with the same access
characteristics (coherency, UIO etc.)

• SLM namespaces requiring different
access characteristics must use different
HDM decoders (see example in backup)

NSID 2: CXL SLM

Check

SLM NSID 2

16

Use Cases

17

Use Case 1: Data Post-Processing (Before Writing to Storage)
• Value Proposition

• Avoid copying data using DMA from/to Host Memory

• Lower latency CXL® based direct Load/Store access, especially for small input data

• Configuration

• Input Data Buffer is in SLM CXL memory address space

• Output Data Buffer is in SLM

• Example Use Case
1. Application writes (Store) Input Data Buffer using CXL.mem

– Some or all data may reside in Host Cache on completion

2. Host issues NVMe® Execute Program command to Compute Namespace

3. Compute Namespace Operates on data in Input Data Buffer and stores results in Output
Data Buffer

– Uses CXL BI Snoop protocol to keep Host Cache coherent with Input Data Buffer

4. CQE is posted for the Compute Namespace

5. Host issues NVMe Copy command to copy data from Output Data Buffer to Storage
Media

6. Data is copied to Storage Media from Output Data Buffer

7. CQE is posted for the NVM Namespace

SLM NS1: CXL

Compute
NS

Coherency Eng

CXL.IO CXL.Mem

Storage Media

NVM NS

NVMe I/F

CPU Cores

CPU Cache

CXL.io/CXL.mem

Host
Local

Memory

Host

H
os

t M
C

Input Data Buffer

12/45/7

6

Ho
st

Lo

ca
l M

em
or

y
SL

M

CX
L

M
em

or
y

Host Coherent HPA Space

Input Data
Buffer

CXL Fabric

Computa�onal Storage Drive

CXL.mem

CXL.io/NVMe

CSD Local

App

Store

SLM NS 2: NVMe

Output Data Buffer
3

SLM Media

SLM NSes

18

Use Case 2: Data Post-Processing with a Standard SSD
• Value Proposition

• Bypass data movement through Host memory

• Configuration

• Input Data Buffer is in SLM CXL® memory address space

• Output Data Buffer is in SLM CXL memory address space

• Example Use Case

1. Application writes (Store) Input Data Buffer using CXL.mem
– Some or all data may reside in Host Cache on completion

2. Host issues NVMe® Execute Program command to Compute Namespace
3. Compute Namespace operates on data in Input Data Buffer and stores results in

Output Data Buffer
– Uses CXL BI Snoop protocol to keep Host Cache coherent with Input Data Buffer and

Output Data Buffer

4. CQE is posted for Compute Namespace
5. Host generates IO Write to SSD NVM Namespace

– Data Pointer points to Output Buffer in SLM (HDM)

6. SSD uses PCIe® UIO for direct P2P from HDM space and writes to storage media
– Since output buffer is in CXL HDM space, UIO can’t use BAR space for P2P

7. CQE is posted for NVM Namespace

CPU Cores

CPU Cache

CXL.io/CXL.mem

Host
Local

Memory

Host

H
os

t M
C

5/7 1

CXL Fabric

Computa�onal Storage Processor

PCIe .IO
NVMe I/F

STORAGE

Standard SSD

UIO (P2P)

NVM
NS

2/4

6

CXL.mem

CXL.io/NVMe

CSD Local

SLM NS: CXL

Compute
NS

Coherency Eng

CXL.IO CXL.Mem

NVM NS

NVMe I/F

Output Data Buffer
3

SLM Media

SLM NS

Input Data Buffer

19

Summary and Next Steps
• CXL® and NVMe® technologies can be used simultaneously

• CXL brings Load/Store access to NVMe SLM

• CXL and NVMe work together to support NVMe IO Command Sets including the Computational Storage

• Benefits
• Coherency between device SLM and host

• Lower latency for small data transfers between host and SLM

• Since SLM is addressable via HPA, no need to copy data from host memory to SLM

• Bypassing the host for peer-to-peer data movement

• Looking Ahead
• CXL and NVMe Computational Storage are on trajectories that will intersect

• Enhancing NVMe SLM to support CXL is a step to enable convergence/collaboration

20

Questions?

Architected for Performance

	NVM Express® Support for CXL®
	Speakers
	Agenda
	Slide Number 4
	Why Combine CXL® and NVMe® Technologies?
	Benefits of CXL® Load/Store Access
	Benefits of Coherency
	Slide Number 8
	Computational Storage Architecture
	A Deeper Dive of the CSx Resources
	NVMe® Computational Storage Basics
	Slide Number 12
	Host Addressable SLM – NVMe® TP4184
	Potential Config Flow for CXL® SLM
	Host – CXL® SLM Address Mapping
	Slide Number 16
	Use Case 1: Data Post-Processing (Before Writing to Storage)
	Use Case 2: Data Post-Processing with a Standard SSD
	�Summary and Next Steps
	Slide Number 20
	Slide Number 21

