
Multi-Segment L2P Table Lookup
Acceleration: Algorithm and
Implementation
Eelin Tseng
Director, SSD ASIC Development
Silicon Motion Technology Corp.

Legal Notice and Disclaimer

• The content of this document including, but not limited to, concepts, ideas, figures and
architectures is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Silicon Motion Inc. and its affiliates. Silicon Motion
Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the
informational content contained in this document.

• Nothing in these materials is an offer to sell any of the components or devices referenced herein.
• Silicon Motion Inc. may have patents, patent applications, trademarks, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly provided
in any written license agreement from Silicon Motion, Inc., the furnishing of this document does
not give you any license to these patents, trademarks, copyrights, or other intellectual property.

• © 2024 Silicon Motion Inc. or its affiliates. All Rights Reserved.
• Silicon Motion, the Silicon Motion logo, MonTitan , the MonTitan logo are trademarks or

registered trademarks of Silicon Motion Inc.

Agenda

• Why multi-segment L2P Lookup Acceleration
• L2P Lookup Algorithm
• L2P Lookup Acceleration Implementation
• Application
• Summary

Why multi-segment L2P Lookup Acceleration

Program Statement

• In SSD controller, logical block address (LBA) needs to be mapped to NAND
physical address through a mapping table (L2P Table). The minimum mapping
table size is O(n*lg(n)) where n is user capacity

• FW based lookup consumes many CPU cycles and reduces performance drastically
when the physical address bit number is not aligned to byte boundary.

• Multi-segment L2P table adds more complexity due to specific segment boundary
alignment.

• HW acceleration is vital for L2P lookup performance.

Physical Address

0

LUN

Storage (SSD) Controller
LBA to PA Mapping

LUN_0

LUN_1

LUN_Lm

CH_0 CH_C

LBA

Host
Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Page 0

Page 1

Page Pg

Block_0

Block_1

Block_B

Plane_0 Plane_1 Plane_Pl

LUN_0

LUN_1

LUN_Lm

IU_0

IU_1

IU_I

CH LUN Block Plane Page IUPA

L2P Table
Memory
DRAM

L2P Table: Single- and Multi-Segment

Single-Segment0

Straddling from
previous cache line

PA(0) PA(1)

PA(N-1) PA(N-1)

 PA Entry
(PAW bits)

64B Aligned Cacheline

Straddling into
next cache line

N=LBAmax

Entire PAs are stored in a single memory region
without a hole.
For a given LBA, the associated PA(LBA) bit address
offset to the base address is LBA*PAW, where PAW
is the size of PA address

Multi-Segment

PA(0) PA(1)

Segment 0
(n*4KiB)

Segment 1
(n*4KiB)

Last
Segment
(n*4KiB)

Partial Entry
Padding

Partial Entry
PaddingPA(N-1)

Partial Entry
Padding

64B Aligned Cacheline

N=LBAmax

 PA Entry
(PAW bits)

• L2P table memory region is
divided to multiple segments
with equal length.

• The first PA entry in a segment

is always aligned to beginning
of the segment.

• No PA straddling between two
adjacent segment boundary.

• A segment is a unit for L2P table
journaling

L2P Table: Lookup

PA(0) PA(1)

PA(N-1) PA(N-1)

L2PBAR

Cache Line
Offset PA(X)

Byte Offset
In the cache line

Bit offset
In the byte

The L2P table lookup operation is for a given LBA find
out address offset of PA(LBA), then read/write PA
from or to the address offset.

The address offset includes 64B cache line address
offset to the base address, byte address offset to the
cache and bit address offset to the byte

Algorithms

Algorithm: Single-Segment

L2PBAR (L2P Base Address: Cache Line Aligned)

LAW+PAWW-4
123456

Multiplier

PA Bit Offset

LAW+PAWW-1
01234567

PA Byte Offset

LAW-PAWW-4
012345

PA Cache Line Address

0123456

6

89

Bit Offset
In a Byte

0

LBA PAW

LAW+PAWW-4

PA Cache Line Offset

Step 1

Step 2

Constants
(Register) Variables

LAW-1 PAWW-1
012012

Step 4

Byte Offset
In Cache Line

012345

0

LAW-PAWW-4
0123456

Step 3

0

0

Entire operation includes one multiplier, 2 shifts
and one add arithmetic operations to find out the
PA address with
• Cache line offset to the base address,
• Byte offset to the cache line and,
• Bit address to the byte

Algorithm: Multi-Segment

LBASS
(PA Entries)

LBA DIV SS/

SL
(n*4KiB)

Multiply(Shift)

L2PBAR

%

Basic L2P Lookup Algorithm
L2PBAR LBA

LBA Offset
In Segment

Segment
Base Address
(L2PSBAR)

Segment
Offset

Step 1

Step 2

Step 3

The multi-segment L2P table lookup algorithm
is first to find:
• The segment address offset.
• LBA offset in the segment

Then use the segment address offset as a new
base address and LBA offset in the segment as
a new LBA to find PA bit address with single-
segment lookup algorithm

Implementation

L2P Lookup Accelerator

Cache
Controller

Cache Line C-1
(64B)

Cache Line 1

Cache Line 0
(64B)

Request Queues

WRR

Completion Queues

Collision Detection

Active Message Context and Control SM

Completion Controller

L2P Table Lookup Block

C
ol

lis
io

n
Pe

nd
in

g
Q

ue
ue

On-Chip SRAM or Off Chip DRAM

• Queued request and completion interface
• Requests from and completions to SMP cores in the controller.

Used as a sync point for SMP cores.
• No in-order limitation in the same queue or between queues.
• Read and write L2P table for a LBA range.

• Read: Request message carries LBA range. Completion
message carries PAs.

• Update: Request message carries both LBA range and PAs

• Collision detection for overlapped LBA ranges
• No two collided LBA ranges in active state.

• Multiple active requests
• For performance optimization.

• Cache Management
• Access L2P table memory region in granularity of 64B cacheline.
• Optimized for temporal locality
• PA alignment in cache

Application

Usage Example of bit-pack L2P Entry for Large SSD
• Problem for large size SSD drive (64TB/128TB)

• BOM cost for DRAM dies
• PCB placement problem for DRAM dies in U.2, E3.S, and E1.L.

• The efficient way to reduce L2P Table size is to combine
• large IU size and bit-pack L2P Entry (32/33/34/35/36bit PA per entry)

• L2P Size for different IU sizes shown as the table below
L2P Size = ((SSD Size)/IU Size)*(PA bits/8)

4K IU 8K IU 16K IU
SSD Size TB PA bits L2P Size (GiB) PA bits L2P Size (GiB) PA bits L2P Size (GiB)

16 33 15.01 32 7.28 32 3.64
32 34 30.92 33 15.01 32 7.28
64 35 63.66 34 30.92 33 15.01

128 36 130.97 35 63.66 34 30.92

Usage Example of Atomic L2P Access Operation

L2P Accelerator Atomic Access Operations Use case
L2P Entry Read (start LBA, 1-8 of LBAs)

Return the status & the corresponding 1-8 of PPAs in the Completion Message
Used in processing Host Read IO

L2P Entry Write (start LBA, 1-8 of LBAs, PPA list) : 1-8 PPAs of the
consecutive 1-8 LBAs

Return the status

Used in processing TRIM/De-allocate

L2P Entry Read First then Write (start LBA, 1-8 of LBAs, new PPA list)
Return the status and old PPA list

Used in processing Host Write IO

L2P Entry Compare PPA and swap (start LBA, 1-4 of LBAs, old PPA list, new
PPA list)

Used in processing backend write, Garbage
Collection write

• Atomic operation means one operation which includes a sequence of L2P Table accesses to
1 or multiple L2P entries must be performed without being interrupted by other operations
that has any overlapped L2P entry.

• The benefit of atomic L2P access is to reduce the LBA range lock use in IO control path and
therefore reduce IO latency.

Usage of Multi-segment L2P Table

• In NVMe 2.0 multi-Namespace
configuration, each NS is usually
created with n of NS Granularity
Units (NSGU) and one map table
between NSGUs to assigned L2P
segments.

• L2PAC engine supports
configurable segment size. No
any L2P PA spreading over
consecutive two segments can
save CPU time to calculate the
L2P entry offset during L2P
lookup.

PA(0) PA(1)

Segment 0
(n*4KiB)

Segment 1
(n*4KiB)

Last
Segment
(n*4KiB)

Partial Entry
Padding

Partial Entry
PaddingPA(N-1)

Partial Entry
Padding

64B Aligned Cacheline

N=LBAmax

 PA Entry
(PAW bits)

N
SG

U
0

N
SG

U
1

N
SG

U
n

…
N

SG
U

0
N

SG
U

1
N

SG
U

m
…

M
ap

pi
ng

 o
f N

SG
U

 Id
 to

 L
2P

 S
eg

 Id

N
S1

 S
ize

 =
 n

*
N

S
Gr

an
ul

ar
ity

 S
z

M
ap

pi
ng

 o
f N

SG
U

 Id
 to

 L
2P

 S
eg

 Id

N
S1

 S
ize

 =
 m

*
N

S
Gr

an
ul

ar
ity

 S
z

N
S

2
N

S
1
Segmented L2P
Table in DRAM

Multiple Namespaces

Summary

• L2P Table and Lookup Algorithm for single and multiple segment
memory regions with minimal memory size.

• HW implemented L2P table lookup accelerator for multi SMP core
requests

• Application for SSD L2P table lookup.

Meet us at booth #315

Scan to learn more!

	Multi-Segment L2P Table Lookup Acceleration: Algorithm and Implementation
	Legal Notice and Disclaimer
	Agenda
	Why multi-segment L2P Lookup Acceleration�
	Program Statement
	Physical Address
	L2P Table: Single- and Multi-Segment
	L2P Table: Lookup
	Algorithms�
	Algorithm: Single-Segment
	Algorithm: Multi-Segment
	Implementation�
	L2P Lookup Accelerator
	Application�
	Usage Example of bit-pack L2P Entry for Large SSD
	Usage Example of Atomic L2P Access Operation
	Usage of Multi-segment L2P Table
	Summary
	Slide Number 19

