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Why multi-segment L2P Lookup Acceleration



Program Statement

• In SSD controller, logical block address (LBA) needs to be mapped to NAND 
physical address through a mapping table (L2P Table). The minimum mapping 
table size is O(n*lg(n)) where n is user capacity

• FW based lookup consumes many CPU cycles and reduces performance drastically 
when the physical address bit number is not aligned to byte boundary.

• Multi-segment L2P table adds more complexity due to specific segment boundary 
alignment. 

• HW acceleration is vital for L2P lookup performance.
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L2P Table: Single- and Multi-Segment

Single-Segment0

Straddling from 
previous cache line 

PA(0) PA(1)

PA(N-1) PA(N-1)

  PA Entry
(PAW bits)

64B Aligned Cacheline

Straddling into 
next cache line 

N=LBAmax

Entire PAs are stored in a single memory region 
without a hole.  
For a given LBA, the associated PA(LBA) bit address 
offset to the base address is LBA*PAW, where PAW 
is the size of PA address 

Multi-Segment

PA(0) PA(1)

Segment 0
(n*4KiB)

Segment 1
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Last
Segment
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Partial Entry 
Padding

Partial Entry 
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Partial Entry 
Padding

64B Aligned Cacheline
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  PA Entry
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• L2P table memory region is 
divided to multiple segments 
with equal length.

 
• The first PA entry in a segment 

is always aligned to beginning 
of the segment.

• No PA straddling between two 
adjacent segment boundary.

• A segment is a unit for L2P table 
journaling



L2P Table: Lookup

PA(0) PA(1)

PA(N-1) PA(N-1)

L2PBAR

Cache Line 
Offset PA(X)

Byte Offset
In the cache line

Bit offset
In the byte

The L2P table lookup operation is for a given LBA find 
out address offset of PA(LBA), then read/write PA 
from or to the address offset.

The address offset includes 64B cache line address 
offset to the base address, byte address offset to the 
cache and bit address offset to the byte 



Algorithms



Algorithm: Single-Segment

L2PBAR (L2P Base Address: Cache Line Aligned)
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Entire operation includes one multiplier, 2 shifts 
and one add arithmetic operations to find out the 
PA address with 
• Cache line offset to the base address, 
• Byte offset to the cache line and,
• Bit address to the byte   



Algorithm: Multi-Segment

LBASS
(PA Entries)

LBA DIV SS/

SL
(n*4KiB)

Multiply(Shift)
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%

Basic L2P Lookup  Algorithm
L2PBAR LBA

LBA Offset
In Segment

Segment 
Base Address 
(L2PSBAR)

Segment 
Offset

Step 1

Step 2

Step 3

The multi-segment L2P table lookup algorithm 
is first to find:
• The segment address offset.
• LBA offset in the segment

Then use the segment address offset as a new 
base address and LBA offset in the segment as 
a new LBA to find PA bit address with single-
segment lookup algorithm



Implementation



L2P Lookup Accelerator 
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• Queued request and completion interface
• Requests from and completions to SMP cores in the controller. 

Used as a sync point for SMP cores. 
• No in-order limitation in the same queue or between queues.
• Read and write L2P table for a LBA range. 

• Read: Request message carries LBA range. Completion 
message carries PAs.

• Update:  Request message carries both LBA range and PAs

• Collision detection for overlapped LBA ranges 
• No two collided LBA ranges in active state.

• Multiple active requests 
• For performance optimization. 

• Cache Management
• Access L2P table memory region in granularity of 64B cacheline.
• Optimized for temporal locality 
• PA alignment in cache



Application



Usage Example of bit-pack L2P Entry for Large SSD
• Problem for large size SSD drive (64TB/128TB)

• BOM cost for DRAM dies 
• PCB placement problem for DRAM dies in U.2, E3.S,  and E1.L.

• The efficient way to reduce L2P Table size is to combine
• large IU size and bit-pack L2P Entry (32/33/34/35/36bit PA per entry)

• L2P Size for different IU sizes shown as the table below  
L2P Size = ((SSD Size)/IU Size)*(PA bits/8)

4K IU 8K IU 16K IU
SSD Size TB PA bits L2P Size (GiB) PA bits L2P Size (GiB) PA bits L2P Size (GiB)

16 33 15.01 32 7.28 32 3.64
32 34 30.92 33 15.01 32 7.28
64 35 63.66 34 30.92 33 15.01

128 36 130.97 35 63.66 34 30.92



Usage Example of Atomic L2P Access Operation

L2P Accelerator Atomic Access Operations Use case
L2P Entry Read (start LBA, 1-8 of LBAs)

Return the status & the corresponding 1-8 of PPAs  in the Completion Message
Used in processing Host Read IO

L2P Entry Write (start LBA, 1-8 of LBAs, PPA list) : 1-8 PPAs of the 
consecutive 1-8 LBAs

Return the status 

Used in processing TRIM/De-allocate

L2P Entry Read First then Write (start LBA, 1-8 of LBAs, new PPA list)
Return the status and old PPA list

Used in processing Host Write IO

L2P Entry Compare PPA and swap (start LBA, 1-4 of LBAs, old PPA list, new 
PPA list)  

Used in processing backend write, Garbage 
Collection write

• Atomic operation means one operation which includes a sequence of L2P Table accesses to 
1 or multiple L2P entries must be performed without being interrupted by other operations 
that has any overlapped L2P entry.  

• The benefit of atomic L2P access is to reduce the LBA range lock use in IO control path and 
therefore reduce IO latency.



Usage of Multi-segment L2P Table

• In NVMe 2.0 multi-Namespace 
configuration, each NS is usually 
created with n of NS Granularity 
Units (NSGU) and one map table 
between NSGUs to assigned L2P 
segments.   

• L2PAC engine supports 
configurable segment size. No 
any L2P PA spreading over 
consecutive two segments can 
save CPU time to calculate the 
L2P entry offset during L2P 
lookup.   
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Summary

• L2P Table and Lookup Algorithm for single and multiple segment 
memory regions with minimal memory size.

• HW implemented L2P table lookup accelerator for multi SMP core 
requests  

• Application for SSD L2P table lookup. 
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